2-Binary trees: Bijections and related issues
نویسندگان
چکیده
منابع مشابه
2-Binary trees: Bijections and related issues
A 2-binary tree is a binary rooted tree whose root is colored black and the other vertices are either black or white. We present several bijections concerning different types of 2-binary trees as well as other combinatorial structures such as ternary trees, non-crossing trees, Schröder paths, Motzkin paths and Dyck paths. We also obtain a number of enumeration results with respect to certain st...
متن کاملBijections for 2-plane trees and ternary trees
According to the Fibonacci number which is studied by Prodinger et al., we introduce the 2-plane tree which is a planted plane tree with each of its vertices colored with one of two colors and qqppppppppppppppppp -free. The similarity of the enumeration between 2-plane trees and ternary trees leads us to build several bijections. Especially, we found a bijection between the set of 2-plane trees...
متن کاملBijections for ternary trees and non-crossing trees
The number Nn of non-crossing trees of size n satis/es Nn+1 = Tn where Tn enumerates ternary trees of size n. We construct a new bijection to establish that fact. Since Tn =(1=(2n+ 1))( 3n n ), it follows that 3(3n− 1)(3n− 2)Tn−1 = 2n(2n+ 1)Tn. We construct two bijections “explaining” this recursion; one of them easily extends to the case of t-ary trees. c © 2002 Elsevier Science B.V. All right...
متن کاملBijections for Cayley trees, spanning trees, and their q-analogues
We construct a family of extremely simple bijections that yield Cayley’s famous formula for counting trees. The weight preserving properties of these bijections furnish a number of multivariate generating functions for weighted Cayley trees. Essentially the same idea is used to derive bijective proofs and q-analogues for the number of spanning trees of other graphs, including the complete bipar...
متن کاملBijections for Baxter families and related objects
The Baxter number Bn can be written as Bn = ∑n k=0 Θk,n−k−1 with Θk,l = 2 (k + 1) (k + 2) (
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2008
ISSN: 0012-365X
DOI: 10.1016/j.disc.2007.04.007